Government College of Engineering and Research, Avasari(Khurd)

Department: Mechanical Engineering
 Learning Resource Material (LRM)

Name of the course: Mechanical System Design Course Code: 402048
Name of the faculty: J. M. Arackal Class: BE(Mech)

SYLLABUS(Unit 4)

Unit 4: Design of Cylinders and Pressure

Vessels
Design of Cylinders: Thin and thick cylinders, Lame's equation, Clavarino's and Bernie's equations, design of hydraulic and pneumatic cylinders, auto-frettage and compound cylinders,(No Derivation) gasketed joints in cylindrical vessels (No derivation).
Design of Pressure vessel : Modes of failures in pressure vessels, unfired pressure vessels, classification of pressure vessels as per I. 2825 - categories and types of welded joints, weld joint efficiency, stresses induced in pressure vessels, materials for pressure vessel, thickness of cylindrical shells and design of end closures as per code, nozzles and openings in pressure vessels, reinforcement of openings in shell and end closures - area compensation method, types of vessel supports (theoretical treatment only).

Lecture Plan format:

Name of the course: Mechanical System Design Course Code 402048
Name of the faculty: J. M. Arackal
Class: BE(Mech)

Unit No	Lecture No.	Topics to be covered	Text/Reference Book/ Web Reference
		UNIT 4	
4	1	Thin and thick cylinders	1
4	2	Lame's equation, Clavarino and Bernie's equations	1
4	3	Design of hydraulic and pneumatic cylinders	1
4	4	Auto-frettage and compound cylinders	1
4	5	Gasketed joints in cylindrical vessels	1
4	6	Modes of failures in pressure vessels, unfired pressure vessels, classification of pressure vessels as per I. S. 2825 - categories and types of welded joints	1
4	7	thickness of cylindrical shells and design of end closures as per code	1
4	8	nozzles and openings in pressure vessels	1

List of Text Books/Reference Books/ Web Reference

1-Bhandari V.B. —Design of Machine Elementsll, Tata McGraw Hill Pub. Co. Ltd.
2-R.K. Jain- Machine Design, Khanna Publishers
3-Johnson R.C., —Mechanical Design Synthesis with Optimization Applicationsll, Von Nostrand Reynold Pub

UNIT 4- DESIGN OF CYLINDERS AND PRESSURE VESSEL

Cylinder and Pressure Vessel

Stresses in Thin Cylinder

1) Circumferential/Hoop stress/Tangential;

Exerted circumferentially on every particle in the cylinder wall.

- Can he imagined as a band surrounding a borrel.
- When barrel expands, the band stretches and undergoes stress

2)Longitudinal stress: Parallell to the axis of cylindrical

3) Radial stress: (Compinessivel:

Caused by the design pressures acting through the wall thickness (neglected). As P'small

Tangential/Circumferentia//Hoopstress

Radial Stress in Thin Cylinder (ou)

Aavarutias
Rasial atest is neglentet as P is very mall

Principal Stresses in Thin Cylinder

$\sigma_{t}=\frac{p_{i} d_{i}}{2 t \eta_{u}} \quad \sigma_{1}=\frac{p_{i} d_{i}}{4 \mathrm{t} \eta_{c}} \quad$ ot oL or
$\sigma_{\mathrm{t}}>\sigma_{\mathrm{l}}$ SO: thickness is calculated using tangential stress

$$
t=\frac{p_{i} d_{i}}{2 \sigma t \eta_{l}}
$$

$$
\sigma_{t}=\sigma_{a l l} \text { (Based on failure theory) }
$$

Stress in Spherical vessel

- $\left(p_{1}\right)($ Projected area $)=(\sigma)($ Resisting Area)
- $\left(p_{i}\right)\left(\frac{\pi}{4} d_{i}^{2}\right)=(\sigma)(\pi d, t)$

Spherical pressure vessel has twice the strength of a Cylindrical pressure vessel
For Sperical vessel $\sigma=\sigma_{t}=\sigma_{r}$

Seamless cylinder.
Storage capacity $=0.25 \mathrm{m3}, . \mathrm{Pi}=20 \mathrm{Mpa}$. $\mathrm{L}=2 \mathrm{di}$,

$$
\begin{aligned}
\mathrm{V} & =\frac{\pi}{4} d i^{2} L \\
& =0.25 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\mathrm{t}=\frac{P i d i}{\sigma t} \quad \mathrm{t}=16 \mathrm{~mm} \quad \mathrm{~L}=32
$$

$$
\sigma t=\frac{S_{u t}}{F o S}=\frac{390}{2.5}=156
$$

```
Air receiver:
Storage capacity: 0.25 m3
Operating pressure: }\textrm{Pi}=5\textrm{Mpa
10C8 (Sult=340Mpa)
FOS=4
Neglect weld efficiency.
Dimensions of receiver:?
```


$\mathrm{V}=\frac{\pi}{4} d i^{2} L+\frac{\pi}{6} d i^{3} \quad \mathrm{~L}=2 \mathrm{di}$

$\mathrm{di}=0.492 \mathrm{~m}=500 \mathrm{~mm}$ $\mathrm{~L}=1000 \mathrm{~mm}$$\quad \sigma t=\frac{S_{u t}}{\text { FoS }}=\frac{340}{4}=85$

\quadCylinder Pidi $2 t$$\quad \mathrm{t}=17.7=15 \mathrm{~mm}$

$\sigma t=\frac{\text { Sprical head }}{4 t}$

$$
\mathrm{t}=7.35=8 \mathrm{~mm}
$$

Stresses in Thick Cylinder

- $\frac{d}{t} \leq 20 \quad t \quad \frac{d_{1}}{20}$	
-	High pressure boilers
- Hydrauliccylinders	
- Gun barrels	
- Reactors	

Thin Cyinder Assumption:

- Circumferential Stress is uniformly distributed over the thickness
- Radial Stress is neglected: Since for thin c ylinder p is small

Cylinder with Internal Pressure (Pi)

$$
\left.\left.\sigma r=-\frac{P i d i^{2}}{\left[d o^{2}-d i^{2}\right]} \right\rvert\, \frac{d o^{2}}{4 r^{2}}-1\right] \quad \text { Compressive stress }
$$

$$
\sigma t=\frac{P\left(d l^{2}\right.}{\left[d o^{2}-d t^{2}\right]}\left[\frac{d o^{2}}{4 r^{2}}+1\right]
$$

$$
\sigma l=\frac{p_{i}\left(d i^{2}\right)}{\left[d o^{2}-d i^{2}\right]}
$$

$$
\sigma_{1}=\frac{\mu_{1} d_{i}}{4}
$$

Principal stresses

Max Principal stres5es

Min Principal stresses

$$
\begin{array}{r}
\sigma t=\frac{P i\left(d o^{2}+d i^{2}\right)}{\left[d o^{2}-d i^{2}\right]}=\sigma_{\max } \\
\sigma r=-P i
\end{array} \sigma_{\min }
$$

Lames Equhtion
Wall thickness of shell $t=$ Theories of failure

- Artile material (eg. CI
- Baeded an Maximum principal stress thaory of falure

- $\sigma_{\text {max }}=\sigma_{\text {all }}$

Substitute $\mathrm{t}=\frac{\mathrm{B}_{4}-d_{i}}{2}$

$$
\mathrm{t}=\frac{d i}{2}\left(\sqrt{\frac{\sigma_{a l l}+p i}{\sigma_{a l l}-p i}}-1\right)
$$

Clavarino's \& Birnie's equation/St Venants theory

Cylinder with External Pressure (Po)

$\sigma r=-\frac{P o d o^{2}}{\left[d o^{2}-d i^{2}\right]}\left[1-\frac{d i^{2}}{4 \mathrm{r}^{2}}\right] \quad \sigma t=-\frac{P o d o^{2}}{\left[d o^{2}-d t^{2}\right]}\left[1+\frac{d i^{2}}{4 r^{2}}\right]$

$r=\frac{d t}{2}$	$r=\frac{d o}{2}$
$\sigma r=0$	$\sigma r=-P o$
$\sigma t=-\frac{2 P \theta\left[d o^{2}\right]}{\left\|d o^{2}-d t^{2}\right\|}$	$\sigma t=-\frac{\left.P o \mid d o^{2}+d t^{2}\right]}{\left\|d o^{2}-d t^{2}\right\|}$

Autofrettage Pre-Stressing

When subjected to Pi ,
Hoop stress σ_{t} limits pressure capacity

Autofrettage is method to increase the pressure capacity of cylinder
Used for HP Cylinder, Gun Barrels

1) Overloading method of Autofrettage

- Cylinder subjected to immense pressure, which causes the internal parts of the vessel to vield, thus resulting in internal comoressive residualstresses.
*it increases pressiure capacity of cylinder
- Rusiduals compressive strestes clewe the eratis
- For same thickness cylinder can be used for Pi more than designed.

2) Wire wound method of Autofrettage

Wire under tension is alosely wound the eylinder results in residual compressive stresses

Compounding of gylinders

Two concentric cylinder with outer cyllnder shrunk onto Inner one, it induces residual compressive stresses on inner cyllinder

Defoemations in iacket and cylinder

$$
\delta_{i}=\frac{D_{2} P\left[\frac{\left(D_{2}^{2}+D_{2}^{2}\right)}{E}\left[D_{1}^{2}-D_{2}^{2}\right)\right.}{\left(D_{2}\right)} \quad \delta_{6}=-\frac{D_{2} P}{E}\left[\frac{\left(D_{2}^{2}+D_{1}^{2}\right)}{\left(D_{2}^{2}-D_{1}^{2}\right)}-\mu\right]
$$

$$
\delta=\frac{P D_{2}}{E}\left[\frac{2 D_{(}^{2}\left(D_{1}^{2}-D_{2}^{2}\right)}{\left(D_{3}^{2}-D_{2}^{2}\right)\left(D_{2}^{2}-D_{1}^{2}\right)}\right]
$$

The shriakage presure P

A high-pmossume cy-linder combinks
of a steel tube wifl itmer amd owter dicamelers of $2 t$ and 40 mm nesposetively: Ir is fackefed by am oufer sfoel rube, having an outer diamefer of 69 mm The rubes are assembled by a shorinking proeess in suech a woy that maximum primeipal stress induced In amy rube is limifed fo $100 \mathrm{~N} / \mathrm{mm}^{2}$, Calculate the sturinkage pmosstore and original dimensions of the nubers (E - $207 \mathrm{kN} / \mathrm{kmm}^{2}$),

$$
\begin{gathered}
D_{1}=20 \mathrm{~mm} \quad D_{2}=40 \mathrm{~mm} \quad D_{3}=60 \mathrm{~mm} \\
\sigma_{\max }=100 \mathrm{~N} / \mathrm{mm}^{2} \quad E=207 \mathrm{kN} / \mathrm{mm}^{2}
\end{gathered}
$$

Shrinkage pressure
$\begin{aligned} \sigma_{1} & =\frac{P\left(D_{1}^{2}+D_{2}^{2}\right)}{\left(D_{3}^{2}-D_{2}^{2}\right)} \text { or } 100=\frac{P\left(60^{2}+40^{2}\right)}{\left(60^{2}-40^{2}\right)} \\ P & =38.46 \mathrm{~N} / \mathrm{mm}^{2}\end{aligned}$

Stress due to Shrink Pressure $[\mathrm{P}=38.46] \quad$ Jacket
$\sigma_{r}=-\frac{\mu D^{\prime}}{\left(B^{3}-D_{3}^{\prime}\right)}\left[\frac{D_{5}^{2}}{4 r^{2}}-1\right]=-30,77\left[\left(\frac{2 \theta}{r}\right)^{7}-1\right]$

$\left.r_{1}=-\frac{m n^{2}}{\left\langle D^{2}-D^{2}\right.}\right)\left(\frac{n^{3}}{4 r^{2}}+1\right.$	

R	10	15	20
$6 R$	0	-28	-38
$6 t$	103	-74	64

Stress due to Shrink Pressure [$\mathrm{P}=38.46$]
Cylinder

R	20	25	30
σR	-38	-14	-0
$\overline{\sigma t}$	100	75	62

Stress due to Internal Pressure $[\mathrm{P} \mathrm{i}=300]$
$\sigma_{c}=-\frac{F_{i} D_{1}^{2}}{\left(D_{3}^{3}-b_{2}^{2}\right)}\left[\frac{b_{3}^{2}}{4 r^{2}}-1\right]=-37.5\left[\left(\frac{30}{r}\right)^{3}-1\right]$
$\sigma_{1}=+\frac{P_{1} g_{1}^{2}}{\left(D_{3}^{2}-D_{1}^{2}\right)}\left[\frac{D_{2}^{2}}{4 r^{2}}+1\right]=+37.5\left[\left(\frac{30}{r}\right)^{2}+1\right.$

	Cylinder				Jacket		
R	10	15	20	20	25	30	
$6 R$	-300	-112	-47	-47	-16	0	
σt	375	187	122	122	91	75	

		Cylinder			Jacket		
Rad		10	is	20	30	25	30
IiR	Pi	300	117	-47	-47	-16	0
	P	\square	71月		48	14	0
	R	-300	-140	- ${ }^{\text {S }}$	-85	50	9
6 t	P1	375	187	122	122	91	75
	P	103	-74	164	100	75	67
	R	272	113	58	222	143	137

Cylinder with Internal Pressure (Pi)

$\left[\sigma_{t} 2 d r l\right]+[2(r+d r) l(\sigma r+d \sigma r)]=[2 r l \sigma r]$
Neglecting ($d r \times d \sigma r$)

$$
\left(\sigma_{t}+\sigma r\right)+r \frac{d}{d r}(\sigma r)=0 \quad \text { eq. } 1
$$

ε_{l} is constant over the thickness
$\varepsilon_{l}=\frac{\sigma_{l}}{\mathrm{E}}+\mu \frac{\sigma_{r}}{\mathrm{E}}-\mu \frac{\sigma_{t}}{\mathrm{E}} \quad\left(\sigma_{r}-\sigma_{t}\right)=\frac{E}{\mu}\left(\varepsilon_{l}-\frac{\sigma_{l}}{\mathrm{E}}\right)$

| $\left(\sigma_{r}-\sigma_{t}\right)=-2 \mathrm{~A}$ | eq. 2 |
| :--- | :--- |\quad| From eqn 1 and 2 |
| :--- |
| $2 \sigma_{r}+r \frac{d}{d r}(\sigma r)=-2 \mathrm{~A}$ |

Multiply both sides by r
$2 \sigma_{r} r+r^{2} \frac{d}{d r}(\sigma r)=-2 \mathrm{~A} r$
$\frac{d}{d r}\left(r^{2} \sigma r\right)=-2 A r$
Integrating wrt r
$r^{2} \sigma r=-A r^{2}+B$
$\sigma r=-A+\frac{B}{r^{2}}$

From eqn 2. $\sigma t=A+\frac{B}{r^{2}}$

\quad or $=P i$	at	$r=\frac{d i}{2}$
BCs		
$\quad \sigma r=0$	at	$r=\frac{d o}{2}$

$$
\begin{aligned}
& \mathrm{A}=\frac{P\left(d i^{2}\right.}{\left[d o^{2}-d i^{2}\right]} \\
& \mathrm{B}=\frac{P i d i^{2} d o^{2}}{4\left[d o^{2}-d i^{2}\right]}
\end{aligned}
$$

$\delta_{j}=$ increase in inner diameter of jacket
$\delta_{c}=$ decrease in outer diameter of cylinder
Tangential Strain in Outer cylinder (Iacket)
$\left(E_{1}\right)_{1}=\frac{\text { change in circumference }}{\text { original circumference }}$

$$
=\frac{\pi\left(D_{2}+\delta_{1}\right)-\pi D_{2}}{\pi D_{2}}=\frac{\delta_{1}}{D_{2}}
$$

Tangential Strain in Outer cylinder (Jacket)

$$
\left(\varepsilon_{1}\right)_{j}=\frac{\text { change in circumference }}{\text { original circumference }}=\frac{\pi\left(D_{2}+\delta_{i}\right)-\pi D_{2}}{\pi D_{2}}=\frac{\delta_{1}}{D_{2}}
$$

$$
\left(\varepsilon_{1}\right)_{j}=\frac{1}{E}\left[\sigma_{t}-\mu \sigma_{r}\right] \quad \delta_{j}=\frac{D_{2}}{E}\left[\sigma_{t}-\mu \sigma_{r}\right]
$$

$$
\sigma_{1}=+\frac{P\left(D_{3}^{2}+D_{2}^{2}\right)}{\left(D_{3}^{2}-D_{2}^{2}\right)} \sigma_{r}=-P
$$

$$
\delta_{j}=\frac{D_{2} P}{E}\left[\frac{\left(D_{3}^{2}+D_{2}^{2}\right)}{\left(D_{3}^{2}-D_{2}^{2}\right)}+\mu\right]
$$

Compressive Strain in Inner cylinder

$$
\left(e_{1}\right)_{c}=\frac{\pi D_{2}-\pi\left(D_{2}-\delta_{c}\right)}{\pi D_{2}}=\frac{\delta_{c}}{D_{2}}
$$

$$
\left(\varepsilon_{1}\right)_{\mathrm{c}}=\frac{1}{E}\left[\sigma_{\mathrm{t}}-\mu \sigma_{\mathrm{t}}\right]
$$

$$
\sigma_{1}=-\frac{P\left(D_{2}^{2}+D_{1}^{2}\right)}{\left(D_{2}^{2}-D_{1}^{2}\right)}
$$

$$
\sigma_{1}=-P
$$

$$
\delta_{\mathrm{c}}=-\frac{D_{2} P}{E}\left[\frac{\left(D_{2}^{2}+D_{1}^{2}\right)}{\left(D_{2}^{2}-D_{1}^{2}\right)}-\mu\right]
$$

$$
t=\frac{P_{i} D_{0}}{2 \sigma_{1}}
$$

Q1) The piston rod of a hydrauliccylindee exerts an. operating force of 10 kN . The friction due to piston packing \& stuffing box is equivalent to 10% of. operating fora. The pressure in the cylundes is. 10 MPa . The cylincles is made of cast Iron $F G 2 \infty$ \& the factor of safety is 5 . Determine the diameter \& thickness of the cylinder.
Ans). The cylinder is brittle.. we will use lames. equation.

$$
\begin{equation*}
t=\frac{D_{i}}{2}\left[\sqrt{\frac{\sigma_{t}+P_{i}}{\sigma_{t}-P_{i}}-1}\right] \tag{1}
\end{equation*}
$$

- The total force on the piston.

$$
P=10 \times 10^{3}+\underbrace{\frac{10}{100}\left(10 \times 10^{3}\right)}_{\text {friction }}=11000 \mathrm{M} .
$$

lat D_{i} be the internal dit of the cylinder.

$$
\begin{aligned}
& \therefore P_{i}=\frac{P}{A} \quad\left[P_{i}=10 \mathrm{MP} P_{a}(f 10 \mathrm{~N})\right] \\
& 10=\frac{11000}{\frac{17}{4} D_{i}^{2}} \quad \therefore D_{1}=37.42 \mathrm{mn} \\
& D_{i} \approx 40 \mathrm{~mm}-\text { Ans }
\end{aligned}
$$

$x=$ put all the values in eqn!

$$
\begin{aligned}
& t=\left(\frac{40}{2}\right)\left[\sqrt{\frac{\sigma_{1}+10}{\sigma_{5}-10}}-1\right] \\
& \sigma=\frac{200}{F 0 s}=\frac{200}{5}=40 . \text { put in above. } \\
& t=\left(\frac{40}{2}\right)\left(\sqrt{\frac{40+10}{40-10}}-1\right] \\
& t=5.82 \mathrm{~mm} \approx 6 \mathrm{~mm} . \text { Ans }
\end{aligned}
$$

a) The inner diameter of a cylindrical tank. for liquified gas at 250 mm . The gas. pressure is limited to 15 MPa . The tank is made of. plain cs 100_{4} (Sot $=3 \mathrm{foN} / \mathrm{mm}^{2} \quad R \mu=0.27$). and the factor of safety is 5. Calculate the. cylinder wall thickness.
Ans) $\sigma^{\prime}=\frac{\text { Sot }}{\text { fos }}=\frac{340}{5}=68 \mathrm{~N} / \mathrm{mm}^{2}$.
Tank is made of Ductile material, So using clavarino's equation.

$$
\begin{aligned}
t & =\frac{D_{i}}{2}\left[\sqrt{\left.\frac{\sigma+(1-24) P_{1}}{\sigma-(14-24}\right)-1}-1\right. \\
& =\frac{25}{2}^{\circ}
\end{aligned} \sqrt{\frac{68+(1-2(0.27)(15)}{68-C 1+0.27)(15)}}-11
$$

- A seamless steel pipe of 100 mm internal diameter? is subjected. to internal pressure of 12 MPa . It made of steel $\left(S_{y_{1}}=230 \mathrm{~N} / \mathrm{mm}^{2}\right.$ \& $\mu=0.27$). \& the factor of safety is 2.5 Determine the. thickness of the pipe.
Ans) The pipe has open ends so brinier eqris applicabl。

$$
\begin{aligned}
& t=\frac{D_{i}}{2}\left[\sqrt{\frac{\sigma+(1-\mu) P_{i}}{\sigma-(1+\mu) \cdot p_{i}}-1}\right] \\
& \sigma=\frac{S_{y t}}{f 05}=\frac{230}{2.5}=92 \mathrm{~N} / \mathrm{mn}^{2} . \\
& =t=\frac{100}{2}\left[\sqrt{\frac{92+(1-0.27)(12)}{92-(1+0.27)(12}}-1\right] \\
& t=7.29 \approx 8 \mathrm{~mm} .
\end{aligned}
$$

σ_{t}
Cylinders with external Pressure.
we had derived.

$$
\begin{aligned}
& \sigma_{t}=c_{1}+\frac{c_{2}}{r^{2}} \\
& \sigma_{r}=-c_{1}+\frac{c_{2}}{r^{2}} . \\
& \sigma_{r}=P_{0} \quad \text { when } r=\frac{D_{0}}{2} . \\
& \sigma_{r}=0 \quad \text { when } r=\frac{D_{1}}{2} .
\end{aligned}
$$

Put the boundary condet,
which yields.

$$
\begin{aligned}
& C_{1}=\frac{-P_{0} D_{0}^{2}}{\left(D_{0}^{2}-D_{i}^{2}\right)} \\
& C_{2}=-\frac{P_{0} D_{1}^{2} D_{0}^{2}}{4\left(D_{0}^{2}-D_{1}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \sigma_{2} & =-\frac{P_{0} D_{0}^{2}}{\left(D_{0}^{2}-D_{1}^{2}\right)}\left[1-\frac{D_{1}^{2}}{4 r^{2}}\right] \\
\sigma_{t} & =-\frac{P_{0} D_{0}^{2}}{\left(D_{0}^{2}-D_{1}^{2}\right)}\left[1+\frac{P_{1}^{2}}{4 r^{2}}\right]
\end{aligned}
$$

At inner surf ace of cylinder.

$$
\begin{aligned}
r_{2} & =\frac{D_{1}^{\prime}}{2} \\
\cdots \sigma_{r} & =0 \\
\sigma_{c} & =\frac{-2 P_{0} D_{0}^{2}}{\left(D_{0}^{2}-D_{1}^{2}\right)}
\end{aligned}
$$

A the outre surface

$$
\begin{aligned}
r & =\frac{D_{0}}{2} \\
\sigma_{r} & =-P_{0} \\
\sigma_{t} & =-\frac{P_{0}\left(D_{0}^{2}+D_{1}^{2}\right)}{\left(D_{0}^{2}-D_{1}^{2}\right)}
\end{aligned}
$$

putofrettage.
Att of rettage is a process of pre-st ressing the cylinder before using it in service.

Its used in case of high-pressure cylinders. and gun barrels.
when the cylinder is subjected to internal. pressure, circumferential stress at the (σ_{t}) inner surface limits the pressure capacity of the. cylinder.

In prestressing process, residual compressive stresses are developed. at the inner. surface. When cylinder is loaded in service, the residual compressive stresses at the. inner surface begin to decrease, become. zero \& finally become tensile. as the. pressure is gradually increased.

There are three methods of pre-stressing the cylinder.
1). A compound cylinder, consists of two concentric cylinders with outer. Cylinder shrunk ont inner one. This induces compressive stresses in the inner cylinder
2) Overload the cylinder before its put in service. The overloading pressure is adjusted in such a way that a portion of cylinder near the inner dia is subjected to stresses. in plastic range, white the outer portion is still in elastic range. When pressure. is released, the outer portion which was in. the elastic range, starts contracting exerting pressure on inner parton.

This induced induces residual compressive stresses at the inner surface.
iii) A wire under tension is closely wound, around the cylinder, which results in. residual compressive st resses.
Advantages of Autofrettage.

1) It increases the pressure capacity of the cylinder.
ii). The residual compressive stresses. close the cracks within they cylinder resulting in increased endurance strength.

Compound cylinder

Jacket
 the facket is slightly smaller than the guides. dia of the cylincler, when the jacket is heated, it expands. sufficiently to move over the cylinder. As the jacket cools, it tends to contract on to the inner cyl finder, which induces residual compressive stresses. There is a shrinkage. Pressure. P. between the cylinder \& the jacket. The pressure P. tends to contract thecylindes \& expand the jacket
skis'
Agasket a a device use to crate i mambain a barres against the rranses of fluid across the mating surfaces of a mechanical assembly. Its up instatic fount, such as calender block. P cylinder head.

There are two types of gaskets. metallic 1 non-metallic. Metallic gaskets. consist of sheet of lead copper of aluminium. Non metallic gaskets are made of abestos, Cork. rubber of plastics. Metallic gaskets are used. for hight temperature \& hugh pressure.

Metallic gasket takes a permanent set when compressed in assembly. A there is no recovery. to compensate for seperation of contact forces. They are also susceptible to corrosion \& chemical atmosphere, their performance. depends on surface finish of contacting surfaces.

Asbestos gaskets have excellent resistance to crushing loads. \& cutting action, they also possess dimensional stability, they are used. in cylinder head. wales \& steam pipe fittings Vulcanized compounds of rubber f cook ap. employed as gaskets in steam lines, combustion chambers i chemical environment. but they are affected by fungus. A impala. alkalis, they can flow in imperfections.

fig! use of gaskets in joints

Unfired Pressure vessels,
An unfired pressure vessel is defined as a. vessel ar a pipeline for carrying, storing ar. receiving steam, gases or liquids. at pressures. above the atmospheric pressure.

The Indian standard code for pressure. vessels gives the design procedure for welded. pressure vessels that are made of ferrous. materials and subjected to internal pressure from $1 \mathrm{kgf} / \mathrm{cm}^{2}$ to $200 \mathrm{kgf} / \mathrm{cm}^{2}$.

Small pressure vessels with diameters less. than 150 mm or water containers with capacities, of less than 500 litres do not come unoles the. scope of this code. The code cloes not. include steam boilers, nuclear pressure. vessels ar hot water storage tanks.

There are four categories of welded. joints - $A, B, C \& D$. The term category defines only the location of welded joint

Category A: longitudinal welded joints within th main shell. communicating chambers \& no 221 circumferential joints connecting the end closure. to the main shell, any welded joint in spherical. or formed head.
Category B! Circumferential welded joints in the main shell, cisicum ferentis communicating chambers. or nozzles.
Categoryc: welded joints connecting flanges. and flat heads to the main shell.
Category D! welded founts connecting Communicate chambers \& nozzles to the main shell.

Pressure vessels are classified into three groups -Class 1, class $2 \&$ Class 3.
Class I: This group of pressure vessel to s. are used to contain lethal $\&$ toxic substances eg: hydrocyanic. acid, carbonyl chloride. They are also used. when the operating temperature is less than. $-20^{\circ} \mathrm{C}$, they are fully radiographed (weld).
Class 2: They are same as class 1 but the welded joints are spot radiographed.
Class 3: They are used for relatively light duties. They are not recommended for service when tho operating temperature is less than $0^{\circ} \mathrm{C}$ for more than $250^{\circ} \mathrm{C}$. The maximum pressure is limited. to $17.5 \mathrm{kgf} / \mathrm{Cm}^{2}$. While the maximum shell. thickness is limited to 16 mm . They are usually made from carbon \& low alloy it eels, they are not radiographed.

Pressure.
There are three terms related to pressure. working pressure, design pressure \& hydrostatic pressure. working pressure,

The maximum working pressure is that. which is permitted. for the vessel in operation. It is the pressure. required for the processes that are carried out inside the pressure vessel.
Design pressure
The pressure used in design calculations for quantities as shell thickness $\&$ also in the. design of other attachments, like nozzles and openings.
Design pressure $=1.05$ (maximum working press use), Hydrostatic Test pressure.

The pressure vessel is finally tested. by hydrostatic test.

Hy clrostatic test pressure $=1.3$ (design pressure).
Weld joint Efficiency.
Pressure vessels are fabricated from steel. plates welded together by the fusion welding proces. Theterm weld joint effeciency is of ten. used in pressure vessel design. Its defined as. the ratio of the strength of the welded y out to the strength of the plates..

Double welded butt joint

Single welded. butt join without backing
slap

Table: Weld joint efficiency.
c_{c}

Type of welded
a) Double welded.

C butt joint with

- full penetration
b) Single welded.
C. butt fount with backing strip
(c) single welded built joint without backing strip.
weld joint effeciencle n y

fully	Spot Radiographed.	Not
examined.		
1	0.85	0.70

0.9
0.8
0.65

Thickness of Cylindrical \& spherical shells.
The thickness of cylindrical or shell subjected. to internal pressure is given by.

$$
t=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta_{-} P_{i}}+C A
$$

for spherical shell.

$$
t=\frac{P_{i} D_{i}}{4 \sigma_{t} \eta_{-}-P_{i}}+C A
$$

$t=$ minimum thickness of the shell plate $(\mathrm{mm}$.
$P_{i}=$ design pressure ($M P a$).
$D_{i}=$ inner dit of the shell (mm).
$\sigma_{t}=$ allowable stress for the plate material
$\eta=$ weld joint efficiency.
$C A=$ corrosion allowance (mm).
$\sigma_{t}=\frac{\text { yield strength (or } 0.2 \% \text { proof stress) }}{1.5}$
$\sigma_{t}=\frac{\text { Ultimate tensile strength }}{3.0}$
for of 1.5 or 3 in the above expression is used undue the following two conditions:
i) The pressure vessel is operating at rom. temperature.
11) The pressure inside the vessel is n of fluctuating

The walls of the pressure vessel are, subjected to thinning due to corrosion, which may be of the following forms.
i) Chemical attack, where the metal is dissolved by a chemical reagent
ii) Rusting due to aus \& moisture.
iii) Erosion, where a reagent flows over the. wall. surface at high velocities
(v) Scaling or hogh tomperabue oxidation.

A minimum $C A$ of 1.5 mm is recommended unless a protective lining is. employed,

End closures.
formed heads are used as and olosures for cylindrical perseus vessel. There are duo. types of end closures

- domed Reade.
- Conical Reads.

The domed head are further classified. as.
a) Hemispherical head (min. thickness I min weight.

$$
t=\frac{R_{i} R_{i}}{2 \sigma_{i} \eta-0.2 P_{i}}+C A
$$

$R_{i}=$ Inner radius of the. cylindrical shell.
b) Semi-ellipsoidal head.

ratio of major axis to the minor axis is taken as $2!1$.

$$
t_{1}=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta-0.2 P_{i}}+C A
$$

The thickness of the semi- ellipsoidal head is almost twice of the corresponding hemispherical head; the material cost is also more however. due to shallow dished shape the forming cost is reduced.
$S_{f}=3 t$ or 20 mm (whichever is more).
c) Torispherical head.

$r_{1} \rightarrow$ knuckle radius
$L \rightarrow$ Crown radius.
Torispherecal are extensively used as. end closures for a large variety of cylenducal pressure vessels. They require less forming than semi-ellipsoidal heads. They main. drawback is the local stresses of the two discontinuities, namely the function. between the crown \& the knuckle radius $\&$. the function between the knuckle gradus. \& the cylindrical shell. The thickness is gen by

$$
\begin{gathered}
t=\frac{0.885 P_{i} L}{\sigma_{t} \eta-0.1 P_{t}}+C A \\
r_{i}=0.06 \mathrm{~L}
\end{gathered}
$$

Crown radius L should not be greater than outside dir of the cylindrical shell.

$$
\angle \angle D_{0}
$$

Hemispherecd \& semi-ellipsoidal heads are. used for all tall vertical towers because. they are practically free from discontinuities.

Space is not a limiting factor for vertic al. pressure vessels.

Tordispherical heads are more economic than other types of domed heads. They. are used for horizontal pressure vessels. such as tankers for vales, milk, petrol. diesel of kerosene. They are alsoused. for small vertical pressure vessels.

The thickness of conical head. of section is given by

$$
t=\frac{P_{i} D_{i}}{2 \cos \alpha\left(\sigma_{t} \eta-0.6 P_{i}\right)}+C A
$$

The cylindrical shell. shown in fig is subjected. ${ }^{5}$ to an operating pressure of 0.75 MPa . The yield strength of the plate material is. $200 \mathrm{~N} / \mathrm{mm}^{2}$ \& the corrosion allowance 3 mm . spot radiographed double welded butt joints. are used to fabricate the shell, whose. internal diameter is 2.5 m . Toris pherical. heads, each with a crown radius of 2 m , are used as end closure. Determine the. thickness of the cylindrical shell and the. torispherical head.

A). Design Pressure P_{1}.

$$
\begin{aligned}
& P_{i}=1.05(0.75)=0.7875 \mathrm{MP}_{4} \\
& \eta=0.85 \\
& \sigma_{t}=\frac{S_{y t}}{f_{0 s}}=\frac{200}{1.5}=133.33 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

we have $t=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta-P_{i}}+C A$.

$$
\begin{aligned}
& t=\frac{(0.7875 \times 2500)}{(2 \times 133.33 \times 0.85)-0.7875}+3 \\
& t=11.72 \approx 12 \mathrm{~mm}
\end{aligned}
$$

The thickness of tor is pherical head.

$$
\begin{aligned}
& t=\frac{0.885 P_{i} L}{\sigma_{t} \eta-0.1 P_{i}}+C A \\
& t=\frac{0.885 \times 0.7875 \times 2000}{[(133.33 \times 0.85)-0.1 \times 0.7875]}+3
\end{aligned}
$$

C_{1}

$$
\begin{aligned}
& t=15.3 \\
& \text { ie } t \approx 16 \mathrm{~mm} \\
& \begin{aligned}
\text { Knuckle radius } & =0.06 \mathrm{~L} \\
& =0.06 \times 2000 \\
& =120 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

a) A horizontal pressure vessel consist of a cylindrical shell enclosed by hemisphericop. ends. The volume capacity of the vessel. should be approximately $2 \mathrm{~m}^{3}$ \& the length. should not exceed. 3 m . Assuming the thickness negligibly small compared with overall dementions of the vessel. determine the internal dial 1 the length of the cylindrical shell.

The pressure vessel is fabricated from
C. Steel plates with yield strength of $225 \mathrm{~N} / \mathrm{mm}$. The weld joint efficiency. fact or is 0.858 . corrosion allowance. 2 mm . The pressure vessel. is subjected to an operating pressure of 2 MPa Calculate the thickness of the cylindrical. shell \& the hemispherical end closures,
-1.

Its -given that $v=2 \mathrm{~m}^{3}$.
ie $V=\frac{\frac{\pi}{4} D_{t}^{2} L_{1}}{\underbrace{\frac{\pi}{6}\left(D_{r}^{3}\right)}_{\substack{\text { cylindricd } \\ \text { position. }}} \text { spherical. }}$
Lets apply the geometrical constraints.

$$
\angle=D_{i}+L_{1}
$$

But $L=3 \mathrm{~m}$ (max) as given in question.

$$
\begin{equation*}
\therefore L_{1}=3 r-D_{i} \tag{2}
\end{equation*}
$$

put (2) in (1).

$$
\begin{gathered}
2=\frac{\pi}{4} D_{1}^{2}\left(3-D_{i}\right)+\frac{\pi}{6} D_{1}^{3} \\
2=\frac{\pi}{4}\left(3 D_{1}^{2}-D_{1}^{3}\right)+\frac{\pi}{6} D_{1}^{3} \\
2=\pi\left[\frac{3}{4} D_{1}^{2}-\frac{D_{1}^{3}}{4}+\frac{D_{1}^{3}}{6}\right] \\
\frac{2}{\pi}=\frac{3}{4} D_{1}^{2}-0.083 D_{1}^{3} \\
+0.083 D_{1}^{3}-\frac{3}{4} D_{1}^{2}+\frac{2}{\pi}=0 \\
D_{1}^{3}-9 D_{1}^{2}+.7 .67=0 \\
D_{1}=0.97 \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
\therefore L_{1} & =3-0.97 \\
& =2.03 \mathrm{~m} \\
\therefore v & =\frac{\pi}{4}\left(0.971^{2} \times 2.03+\frac{\pi}{6} \times(0.97)^{2}\right. \\
& =1.5+0.492 \\
v & =1.992 \mathrm{~m}^{2}
\end{aligned}
$$

C_{l}
we have thickness of cylindrical shell.

$$
\begin{gathered}
t=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta-P_{i}}+C A . \\
P_{i}=D_{e s i g h p r e s s u r e}=1.05(2)=2.1 \mathrm{~N} / \mathrm{mm}^{2} \\
D_{i}=970 \mathrm{~mm} \\
\sigma_{t}=\frac{255}{1.5}=170 \mathrm{~N} / \mathrm{mn}^{2} \\
\eta=0.85 \\
C A=2 . \\
\therefore t=\frac{(2.1 \times 970)}{(2 \times 170 \times 0.85)}+2 \\
t=9.04 \approx 10 \mathrm{~mm} .
\end{gathered}
$$

C Thickness of hemispherical end closures

$$
\begin{aligned}
t & =\frac{P_{i} R_{i}}{2 \sigma_{t} \eta-0.2 P_{i}}+C A \\
& =\frac{2.1 \times .485}{(2 \times 170 \times 0.85)-(0.2 \times 2.1)}+2=5.52 \\
\therefore t & =6 \mathrm{~mm}^{n}
\end{aligned}
$$

penings in pressure vessel.
openings are provicled in the pressure. vessel for pipe connection, manhole, hand hob, pressure gauges, temperature gauges. \&. safety value. They are mostly designed by area Compensation method:

The area is added in the form of circular plate (reinfora) around the opening. In this method we are considering croy. sectional area in the formof rectangular. strip. Its not compensation of volume of. metal.

It is not always necessary to replace the. actual. removed area of the metal. The. plate of shell R nozzle are usually thicker. than that required to withstand pressuo

$$
\begin{equation*}
A=d t_{r} \tag{1}
\end{equation*}
$$

$A=$ area of metal removed in corroded. condition.
$d=$ Inner di of opening in corroded condition.

$$
=d i+2 C A
$$

$d_{1}=$ Inner elia of nozzle.
$t_{r}=$ thickness required of cylindrical shelf.

$$
\begin{aligned}
& t_{r}=\frac{P_{i} D_{i}}{2 \sigma_{i} \eta-P_{i}} \\
& x=d \text { or } x=\left[\frac{d_{i}}{2}+t+t_{n}-3 C A\right]
\end{aligned}
$$

(whichever is maximum

$$
h_{1} \operatorname{tor} h_{2}=2.5(t-C A) \text {. }
$$

h_{1} or $h_{2}=2.5\left(t_{n}-C A\right)$ (whenever is mingus,
$t=\operatorname{total}_{(\mathrm{mm})}$ thicknen of wall of cylindrical shell. (mw)
$t_{n}=$ total thickness of nozzle wall.
A. (excess thicknew in vessel wale), available reinforcement, is given by.

$$
\begin{equation*}
A_{1}=(2 x-d)(t-t r n)(A) \tag{2}
\end{equation*}
$$

A_{2} excess thickness Area in nozzle

$$
\begin{gathered}
A_{2}=2 h_{1}\left(t_{n}-t_{i n}-C A\right) \\
t_{1}=\frac{P_{i} d_{i}}{2 \sigma_{t} \eta-R_{1}}
\end{gathered}
$$

A3 the area of inside extension of nozzle.

$$
A_{3}=2 h_{2}\left(t_{n}-2 C A\right)
$$

Total area for rein force ment $=A_{1}+A_{2}+A_{3}$. when

$$
A_{1}+A_{2}+A_{3} \geq A
$$

no pard is required (enforang pad).
But if not then,

$$
\begin{equation*}
A_{4}=A-\left(A_{1}+A_{2}+A_{3}\right) \tag{5}
\end{equation*}
$$

Some times A is used for opening to avoid detail calculations.
-This results in oversized reinforcement

A pressure vessel consists of a cylindrical.? shell with an inner dia of 1500 mm . and a thickness of 20 mm . Is provided with a nozzle of inner diameter of 250 mm and thickness 15 mm . The yield strength. of the material for the shell \& nozzle is $200 \mathrm{~N} / \mathrm{mm}^{2}$ \& the design pressure. is 2.5 MPa . The extension of the nozzle. inside the vessel is 15 mm . The corrosion allowance. is 2 mm , while the. weld joint efficiency is 0.85 . Neglecting. the area of welds, determine whet then. or not a reinforcing pad is required. for the opening. If so determine the. dimensions of pad made from a plate. of 15 mm thickness.
Ans)

$$
\begin{aligned}
& 15 \mathrm{~mm} \text { thickness } \\
& \sigma_{t}=\frac{S_{y t}}{f 0 s}=\frac{200}{15}=133.33 \mathrm{~N} / \mathrm{mm}^{2} \\
& t_{r}=\frac{P_{i} D_{i}}{2 \sigma_{t} \eta-P_{i}} \\
& t_{r}=\frac{2.5 \times 1500}{2(133.33)(0.83)-2.5}=16.73 \mathrm{~mm} \\
& d=d_{i}+2 C A=250+2(2)=254 \\
& A=d t_{r}=254 \times 16.23=4249.42 \mathrm{~mm}^{2} \\
& t_{2 n}=\frac{P_{i} d_{i}}{2 \sigma \eta-P_{i}}=\frac{2.5 \times 250}{(2 \times 133.33 \times 0.85-2.5} \\
& t_{r_{n}}=2.79 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& x-d=254 \mathrm{mv} \\
& X=\left[\frac{d i}{2}+t+t_{n}-3 C A\right] \text {. } \\
& =[125+20+15-6]=154 \mathrm{~mm} \text {. } \\
& \therefore \quad X=254 \mathrm{~mm} \text {. } \\
& h_{1}=2.5(t-C A)=2.5(20-2)=45 \mathrm{nn} \\
& h_{1}=2.5\left(t_{n}-C A\right)=2.5(15-2)=32.5 . \\
& \therefore h_{1}=325 \quad h_{2}=15 \mathrm{~mm} \\
& \left.A_{1}=(2 x-d)\right)(t-t s-C A) \text {. } \\
& =(2 \times 254-254)(20-16.73-2) \\
& A_{1}=32.2 .58 \mathrm{~mm}^{2} \\
& A_{2}=2 h_{p}\left(t_{n}-t_{r_{n}}-C A\right) \text {. } \\
& A_{2}=2 \times 32.5 \times(15-2.79-2) \text {. } \\
& A_{2}=663.65 \mathrm{~mm}^{2} \\
& A_{3}=2 h_{2}\left(t_{n}-2 L A\right) \text {. } \\
& =2 \times 15(15-4) z \\
& A_{3}=330 \mathrm{~mm}^{2} \\
& A_{1}+A_{2}+A_{3}=322.58+663.65+330 \text {. } \\
& =1316.23 \mathrm{mn}^{2} \\
& \therefore A>\left(A_{1}+A_{2}+A_{3}\right) .
\end{aligned}
$$

\therefore Pad is necessary (Reinforcing).

$$
\begin{aligned}
& \therefore A-\left(A_{1}+A_{2}+A_{3}\right)=A_{4} \\
& \therefore A_{4}=4249.42-1316.23=2933.19 \mathrm{mr}^{2} \\
&
\end{aligned}
$$

Pad thickness $=15 \mathrm{~mm}$ (given).

$$
\therefore \omega=\frac{2933.19}{15}=195.55
$$

ASSIGNMENT- DESIGN OF CYLINDERS AND PRESSURE VESSEL

1-What is autofrettage? Explain any one method of pre stressing the cylinders
2- Derive Birnie's equation. Explain under what conditions it is used.
3- Explain the basic principle of the area compensation method. Also explain area compensation for nozzle with its equations

4-The piston rod of a hydraulic cylinder exerts an operating force of 12 kN . The friction due to piston packing and stuffing box is equivalent to 10% of the operating force. The pressure in the cylinder is $10 \mathrm{MN} / \mathrm{m} 2$. The cylinder is made of cast iron FG 200 and factor of safety is 5. Determine the diameter and thickness of cylinder.

5- A hydraulic cylinder with closed ends is subjected to an internal pressure of 15 MPa . The inner and outer diameters of the cylinder are 200 mm and 240 mm respectively. The cylinder material is cast iron FG 300. Determine the factor of safety used in design. If the cylinder pressure is further increased by 50%, what will be the factor of safety?

6-A pressure vessel consists of cylinder shell with 2 m inside diameter and 10 mm thickness. It is subjected to design pressure $0.75 \mathrm{MN} / \mathrm{m} 2$ and having nozzle of inner diameter 300 mm and wall thickness of 10 mm . The corrosion allowance is 2 mm and weld efficiency is 0.85 . The extension of nozzle inside and outside the shell is 15 mm . Take Syt $=210 \mathrm{MPa}$. A reinforcing pad of 10 mm thick plate is provided for opening. Factor of safety $=1.5$. Determine the dimensions of reinforcing pad.

7- What are the objectives of providing openings in pressure vessel
8 - What are types of end closure for cylindrical vessel? State the design procedure of hemispherical head.
9- Explain the various categories of the welded joints used in unfired pressure vessel 10- Derive the expressions to find principal stresses at the inner surface of a thick cylinder.

